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Motivation: explore agent’s surroundings quickly

Open world environments pose a challenge for

common computer vision methods:

Machine learning solutions for computer vision

typically assume complete input data.

Real-world embodied agents like robots and UAVs

face limitations due to restricted fields of view

and operational time.

Capturing high-resolution images of entire scenes

is inefficient, as not all image areas hold equal

amount of information.

Idea: let the vision model directly guide navigation

Active Visual Exploration addresses how an agent

should select visual information from its

environment:

Instead of sampling and analyzing the entire

environment at the highest resolution, the agent

dynamically chooses sampling locations based on

insights from previous exploration steps.

This process is inspired by how humans

instinctively move their heads and eyes to explore.

Current methods for AVE utilise fixed-sized

observations selected from a grid of possible

actions, and therefore fail to fully exploit the

capabilities of modern hardware.

Existing hardware can provide a glimpse of any

position and scale, e.g., using a simple

pan-tilt-zoom camera for robotic platforms.

Similarly, UAVs can alter their position and

altitude freely.

Our solution: Adaptive active visual exploration
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Bird: 0.01% ✗ Elephant: 0.3% ✗ Sheep: 15% ✗ Dog: 83% ✓
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AdaGlimpse processes glimpses of arbitrary position and scale, fully exploiting the capabilities

of modern hardware:

At each step, the model uses previously acquired observations to predict both the target (in

the above example the class of the image) and the best position and scale for the next

observation, selected from a continuous space.

In this above example, AdaGlimpse selects a low-resolution glimpse of the whole

environment. Based on this glimpse, it predicts a bird with probability 0.01, too low to make

the final decision. Instead, it selects the second glimpse by zooming in to the upper left

corner. The process repeats four times until the probability of the predicted class is higher

than a specified threshold.
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AdaGlimpse consists of two parts: a vision transformer-based encoderwith a task-specific head

and a Soft Actor-Critic RL agent:

The encoder combines information from all previous observations, creating a single

representation of the seen environment.

The task head is a linear layer for classification task and a transformer for reconstruction and

segmentation.

The RL agent actor consists of an attention pooling layer and an MLP, which predicts the next

action. For training, a second network is used to act as a critic in the SAC framework.
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Exploration examples

A)

B)

C) snail hopper agama hopper mantis weevil bee eater

D) 22% 33% 49% 36% 76% 26% 88%

Glimpse selection step-by-step: AdaGlimpse explores 224 × 224 images from ImageNet with

32 × 32 glimpses, zooming in on objects of interest and stopping the process after reaching 75%
predicted probability.
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Reconstruction quality for SUN360 (top) and ADE20K (bottom): Sample reconstructions of

our method compared with baselines.

Quantitative results

Method Accuracy % Glimpses Regime Pixel %

DRAM 67.50 8 × 772 full+simple 94.53

GFNet 75.93 5 × 962 full+simple 91.84

Saccader 70.31 6 × 772 full+simple 70.90

TNet 74.62 6 × 772 full+simple 70.90

STN 71.40 9 × 562 full+simple 56.25

PatchDrop 76.00 ∼ 8.9 × 562 full+simple+stopping ∼55.63

STAM 76.13 14 × 322 simple 28.57

Ours 77.54 14 × 322 adaptive 28.57

Ours 76.30 ∼ 8.3 × 322 adaptive+stopping ∼16.94

Classification results: Accuracy obtained by our model

for classification task against baselines on

ImageNet-1k dataset. Note that Pixel % denotes the

percentage of image pixels known to the model.

Method SUN ADE COCO Image res. Glimpses Regime Pixel %

AME 29.8 30.8 32.5 128 × 256 8 × 322 simple 25.00

Ours 11.1* 14.0* 14.5* 224 × 224 12 × 322 adaptive 24.49

AttSeg 37.6 36.6 41.8 128 × 256 8 × 482 retinal 18.75

GlAtEx 33.8 41.9 40.3 128 × 256 8 × 482 retinal 18.75

AME 23.6 23.8 25.2 128 × 256 8 × 482 retinal 18.75

SimGlim 26.2 27.2 29.8 224 × 224 37 × 162 simple 18.75

AME 23.4 26.2 28.6 224 × 224 37 × 162 simple 18.75

Ours 11.1* 14.2* 14.7* 224 × 224 9 × 322 adaptive 18.36

AME 37.9 40.7 43.2 128 × 256 8 × 162 simple 6.25

Ours 17.6* 20.5* 21.5* 224 × 224 12 × 162 adaptive 6.12

Ours 17.2* 20.7* 21.4* 224 × 224 3 × 322 adaptive 6.12

Reconstruction results: RMSE obtained by our model

for reconstruction task against baselines on

ImageNet-1k, SUN360, ADE20K and MS COCO.

Data efficiency
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Percentage of image pixels observed: Figures present the relationship between the amount of pixels observed by

the model relative to the full scene resolution (pixel %), and its performance. AdaGlimpse outperforms competitive

solutions, requiring significantly less information to achieve the same performance.
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