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Abstract

Active visual exploration addresses the issue of limited sensor capa-

bilities in real-world scenarios, where successive observations are ac-

tively chosen based on the environment. To tackle this problem, we

introduce a new technique called Attention-Map Entropy (AME). It

leverages the internal uncertainty of the transformer-based model to

determine the most informative observations. In contrast to existing

solutions, it does not require additional loss components, which sim-

plifies the training. Through experiments, which also mimic retina-

like sensors, we show that such simplified training significantly im-

proves the performance of reconstruction, segmentation and classi-

fication on publicly available datasets.
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Figure 1. Visual exploration – human versus AI: Humans naturally visually explore

surrounding environment, using already observed areas as clues to where the

wanted object can be located [1]. At the same time, common state-of-the-art

artificial intelligence solutions analyze all available data, which is inefficient and

waste time and computational resources. In this project, we introduce a novel

Active Visual Exploration method, enabling AI agents to efficiently explore their

environment.

Method

A standard approach based on auxiliary loss functions
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Figure 2. Attention-Map Entropy (AME): Our approach chooses the most

informative observations by reusing the internal uncertainty coded in the attention

maps. In contrast to existing methods, it does not require any auxiliary loss

functions dedicated to active exploration. Therefore, the training concentrates on

the target task loss, not on an auxiliary loss, which improves overall performance.

Architecture

Figure 3. Architecture for reconstruction: The agent observed two patches of the

image, which are processed by the encoder to produce their feature representations

(orange rectangles). These outputs are combined with the masked patches (shown

as gray rectangles) and passed through the decoder. The decoder reconstructs the

missing image patches. Additionally, our method generates the entropy map for one

of the decoder’s multi-head self-attention layers and uses it to select the location of

the third glimpse. The process repeats till we reach the assumed number of

glimpses.

Attention-map entropy

Figure 4. Entropy map: To explain the idea of the entropy map based on attention

in the transformer layer, let us consider an image divided into four patches (2 × 2) on
the left. Its attention map will be a 4 × 4 matrix, where each row represents the
attention weights used to calculate the output in the next transformer layer for a

corresponding patch. Calculating Shannon’s entropy for each row will result in a

2 × 2 entropy map. The patch with the highest entropy value is selected as the next
glimpse.
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Figure 5. Glimpse-based reconstruction step-by-step: The figure shows a glimpse selection process based on AME for 8 × 322 glimpses for a sample 256 × 128 image. The rows
correspond to a) step number, b) model input (glimpses), c) model prediction given, d) decoder attention entropy (known areas are explicitly set to zero). The algorithm explores

the image in places where the reconstruction result is blurry.

Results

Method SUN360 ADE20k MSCOCO Image res. Glimpse regime Pixel % Area %

AttSeg 37.6 36.6 41.8 128 × 256 8 × 482 (retinal) 18.75 56.25

GlAtEx 33.8 41.9 40.3 128 × 256 8 × 482 (retinal) 18.75 56.25

Ours (retinal) 23.6 23.8 25.2 128 × 256 8 × 482 (retinal) 18.75 56.25

Ours (non-retinal) 37.9 40.7 43.2 128 × 256 8 × 162 (non ret.) 6.25 6.25

Ours (non-retinal) 29.8 30.8 32.5 128 × 256 8 × 322 (non ret.) 25.00 25.00

Ours (non-retinal) 20,1 20.6 22.1 128 × 256 8 × 482 (non ret.) 56.25 56.25

SimGlim (detached) 26.2 27.2 29.8 224 × 224 37 × 162 (non ret.) 18.75 18.75

SimGlim (end-to-end) 28.0 28.8 31.3 224 × 224 37 × 162 (non ret.) 18.75 18.75

Ours (non-retinal) 23.4 26.2 28.6 224 × 224 37 × 162 (non ret.) 18.75 18.75

Table 1. Reconstruction results: Comparison of our model in reconstruction task

against AttSeg [5], GlAtEx [4] and SimGlim [2] on SUN360 [6], ADE20K [7] and

MS COCO [3] datasets. The metric used is a root mean square error (RMSE; lower

is better). For each experiment, we provide a training and evaluation regime defined

by a number of glimpses of a specific resolution. Pixel % and area % denote

respectively: the percentage of image pixels known to the model and the

percentage of image area seen by the model. Differences in both measures occur

when dealing with retina-like glimpses, which have lower pixel counts by design.

Our method outperforms competitive solutions in all configurations.
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Figure 6. Reconstruction quality for SUN360: Reconstruction results of our

method compared with AttSeg [5] and GlAtEx [4] on the SUN360 dataset.

Reconstructions done with our method are visibly better than the competition.
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Figure 7. Reconstruction quality for ADE20K: Figure shows difference in

reconstruction quality against SimGlim [2] on the ADE20K dataset. SimGlim

reconstructs a single object slightly better, but our method recovers more objects in

the scene.

Method mPA(%) PA(%) IoU(%)

AttSeg - 47.9 -

GlAtEx - 52.4 -

Ours (MAE-weights) 32.2 70.27 24.4

Ours (SETR-weights) 35.6 69.5 27.6

Table 2. Segmentation results:

Comparison of our model against

AttSeg [5] and GlAtEx [4]. The metric

used is mean Pixel-wise Accuracy

(mPA, higher is better), Pixel-Accuracy

(PA, higher is better), and Intersection

over Union (IoU, higher is better). Our

solution outperforms competitive

methods on all metrics.

Method Accuracy (%)

AttSeg 52.6

GlAtEx (full) 56.4

GlAtEx (no decoder) 67.2

Ours (head-only) 70.1

Ours (train-all) 75.7

Table 3. Classification results:

Comparison of our model’s

classification performance against

AttSeg [5] and GlAtEx [4] on the

SUN360 dataset. The metric used is

accuracy (higher is better). Our method

outperforms competitive methods in

both Train-all and Head-only training

options.

Results cont.
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Figure 8. Segmentation quality for ADE20K: Semantic segmentation results of our

method compared with GlAtEx [4] on the ADE20k dataset. Qualitatively,

segmentation maps produced by our method are at least as good as those of the

competition.
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